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In this work, we consider an optimization problem described on a surface. The approach is
illustrated on the problem of finding a closed curve whose arclength is as small as possible
while the area enclosed by the curve is fixed. This problem exemplifies a class of optimi-
zation and inverse problems that arise in diverse applications. In our approach, we assume
that the surface is given parametrically. A level set formulation for the curve is developed
in the surface parameter space. We show how to obtain a formal gradient for the optimi-
zation objective, and derive a gradient-type algorithm which minimizes the objective while
respecting the constraint. The algorithm is a projection method which has a PDE interpre-
tation. We demonstrate and verify the method in numerical examples.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

This work represents a continuation of our investigation into optimization problems involving geometry and constraints
[12]. In the present study, we are motivated by the need to solve optimization and inverse problems which are described on
a surface. The problems are geometric in nature; i.e., we wish to find a set (possibly multiply connected) on the surface which
extremizes certain cost functionals. The approach we will present is quite general but we will focus on a specific problem
arising in differential geometry.

Consider a smooth fixed surface S included in some bounded open set X � R3. On this surface, we denote a closed curve
by C (Fig. 1). The arclength of the curve, denoted by ‘ðCÞ, is to be minimized while the area enclosed by the curve is AðCÞ is
fixed. The optimization problem then is
min
AreaðCÞ¼C

‘ðCÞ:
In the planar case, this is a classical problem whose solution is given by the isoperimetric theorem (the unique solution is
a circle). On general surfaces the problem is harder and although there have been some recent advances, some open ques-
tions remain (see [8] and references therein). The goal of this work is to develop an effective numerical method for solving
problems of this type.

In [6], the authors pioneered the use of level set methods for the study of the motion of curves on surfaces. Let S be the
surface and assume that it is included in X � R3. In their approach, the surface S is defined as the zero level set function of
WðxÞ : X! R (see [11] for an introduction to level set methods). The curve Ct , which moves on S, is a function of time t. The
. All rights reserved.
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Fig. 1. The optimization problem is to find the curve with the shortest arclength while keeping the area contained by the curve on the surface fixed. This is
an instance of an optimization problem involving geometry and constraints.
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curve given as the intersection of the zero level sets of WðxÞ and a time-dependent function Uðx; tÞ : X� ð0; TÞ ! R. In their
method, both functions Uðx; tÞ and WðxÞ are given on a Cartesian grid. Differential operations on the surface are computed via
projection of operators in R3.

In our work, the surface S is kept fixed. In contrast, we use a parametric representation of S rather than a level set rep-
resentation. Given that in R3 the number of parameters is two, we wish to exploit this fact in our approach. We will still use a
level set representation for the curve Ct , but it will be given by a function mapping a 2-D domain in parameter space to the
reals. This means that our computational method is 2-D, and can be expected to be efficient. Our approach still has the ben-
efits of a level set method. Singularities which could develop, such as merging and splitting, as the curve Ct evolves, are easily
handled.

The cost in the reduction in computational complexity is an increase in the complexity of the formulas involving differ-
ential operations. Nevertheless, this cost may be worthwhile in many situations since the resulting computation can still be
carried out in 2-D Cartesian grid, albeit in the surface parameter domain and a narrow-band method can still be
implemented.

While the approach we advocate here can be used to address more general optimization problems, the problem we focus
on has been treated in [6, Section 11]. What we offer here is an alternative strategy for this class of problem, i.e., curve opti-
mization problem with fixed-area constraint. The advantage of our approach is computational efficiency. Like the approach
in [6], ours can also deal with time-dependent supporting surface provided that a parametric representation of the moving
surface, St , is known.

As in [12], our strategy for the constrained minimization problem is to devise a projected gradient method. The gradient
of the cost function is projected onto the tangent space of the constraint. Unlike the method proposed in [12], the projection
is done directly to the computed gradient. Moreover, we take the point of view that the iterative method is a gradient flow,
thus, allowing for a PDE interpretation, and numerical implementation using methods for solving PDEs.

In order to do the optimization, we need to develop some formulas to calculate such quantities as arclength, area and
their variations with respect to the level set function. They will be used to derive an iterative method whereby we start with
an initial guess for the curve and proceed to take steps towards minimization by moving the curve.

There has been some notable progress in, as well as new applications of, level set approach for optimal design. Allaire et
al. [2] were the first to exploit the level set method for structural optimization. Their method, while quite powerful, was not
able to nucleate new holes during the optimization process. To address this dependence on initial condition, Allaire et al. [3]
devised a strategy that combines topological derivatives information with level set formulation. Another application comes
from photonics [10] where one is interested in designing a nano-structure with prescribed band-gap properties. The ques-
tion of whether one can devise a topology preserving level set method for optimal design was addressed in [1]. The authors
developed penalty terms that can be added to a design objective so that the topology of the initial guess is maintained
throughout the optimization process. Finally, we mention a review [4] which demonstrates the use of the level set approach
in a variety of inverse and optimal design problems.

The present paper investigates one aspect of optimal design and inverse problem that has not been sufficiently addressed,
that of solving a variational problem where the unknown geometry lies on a surface. We assume that the surface is given
parametrically and exploit this in devising a computational method. The paper is organized as follows: Section 2 details
the general framework for the computational method. We also provide geometrical formulas for arclength and area, and de-
scribe curve evolutions which preserve the area. A descent algorithm for curve shortening is presented in Section 3. In Sec-
tion 4, we derive the equation for the geodesic curvature in terms of the level set function. Additionally, we show that the
geodesic curvature is constant on the curve when the velocity for the flow of the curve is zero. Numerical examples are pre-
sented in Section 5, where we also validate our computational results. A summarizing discussion is contained in Section 6.
For the convenience of the reader, we provide a list of our notation below.
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1.1. Notation

The following notation is used throughout the paper:

� cðr; sÞ : J2 ! R3 is the parameterization of the fixed surface S. In component form c ¼ ðc1; c2; c3Þ
T.

� r ¼ ðor; osÞT. The 3-D Cartesian gradient is denoted by rx.
� uðr; sÞ ¼ 0 is the level set function for the curve on S described in the parameter space.
�

rc ¼
c1;r c1;s

c2;r c2;s

c3;r c3;s

0
B@

1
CA; rcT ¼

c1;r c2;r c3;r

c1;s c2;s c3;s

 !
:

�

r� c ¼
�c1;s c1;r

�c2;s c2;r

�c3;s c3;r

0
B@

1
CA; r� cT ¼

�c1;s �c2;s �c3;s

c1;r c2;r c3;r

 !
:

� ru ¼ ður ;usÞ
T, and r�u ¼ ð�us;urÞ

T.
� For 2-vectors u and v,
u� v ¼
u1v1 u1v2

u2v1 u2v2

� �
:

� Divergence of a 2 � 2 matrix is
divA ¼
A11;r þ A12;s

A21;r þ A22;s

� �
:

2. Motion of curves on a fixed surface

Since the surface S is fixed, we can choose the following parameterization. Let J be an interval, and c : J2 ! R3 be such that
S ¼ fxjx ¼ cðr; sÞ; ðr; sÞ 2 J2g:
We will view the iterative optimization method as a discretization of a ‘flow’. Therefore, it will be most convenient to
consider the problem in the continuous setting. To this end, the curve on the surface is denoted by Ct , where the subscript
t denotes its dependence on time t. The curve Ct is given a level set representation in the parameter domain J2. Let
u : J2 � ð0; TÞ ! R such that
Ct ¼ fxjx ¼ cðr; sÞ; uðr; s; tÞ ¼ 0g:
We will consider two cases:

(i) S has a boundary but the curve Ct does not touch this boundary. We assume u > a > 0 on oJ2.
(ii) S has no boundary. In that case c is taken periodic in r and s.

An obvious generalization is the case where S is a truncated cylinder, then c will be periodic in one direction and u will be
constrained to be positive on the boundary of the parameter space of the other direction. All that follows applies to that case
as well.

To move the curve Ct , we will evolve the level set function uðr; s; tÞ according to a transport equation with a given velocity
field. To constrain the area enclosed by the curve Ct on S, we will need to find a projection for the velocity field. These ideas
are discussed in more detail below.

We note that in our formulation the surface is given explicitly whereas the curve on the surface is given implicitly as the
zero level set of function uðr; sÞ. This fact requires us to derive formulas for simple quantities such as arclength and area,
which are substantially more complicated than those in [6]. We need to work with the parameter variables in order to obtain
2-D equations for the motion of the curve.

2.1. Arclength and surface area

The computation of arclength of Ct on the surface S takes a few steps. We introduce a parametric representation of the
zero level set fðs; rÞjuðr; s; tÞ ¼ 0g. Let K be an interval and s 2 K be a parameter. The map b : s 2 K ! J2 is such that
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uðbðs; tÞ; tÞ ¼ 0:
The curve Ct is then fxjx ¼ cðbðs; tÞÞg, and it is easy to calculate arclength from this. The length of Ct is
‘ðCtÞ ¼
Z

K

d
ds cðbðs; tÞÞ
����

����ds ¼
Z

K
jrcb;sjds ¼

Z
K
rc

b;s
jb;sj

����
����jb;sjds:
The vector b;s=jb;sj is simply the unit tangent on the curve in the parameter domain J2. The component jb;sjds is the
infinitesimal arclength on J2. We replace both these with their level set function counterparts:
‘ðCtÞ ¼
Z

J2
rc
r�u
jruj

����
����jrujdðuÞdr ds:
Here, we have introduced the notation r�u ¼ ½�u;s;u;r �
T, and dð�Þ is the Dirac delta function. We will approximate this

integral as a limit of an approximate delta function. Letting fð�Þ=e be the approximate delta function, we obtain from above:
‘ðCtÞ ¼ lim
e!0

Z
J2
rc
r�u
jruj

����
����jruj1

e
f

u
e

� �
dr ds ¼ lim

e!0

Z
J2
jrcr�uj1

e
f

u
e

� �
dr ds:
Next, letting
r� c ¼
�c1;s c1;r

�c2;s c2;r

�c3;s c3;r

0
B@

1
CA;
we denote
‘eðCtÞ ¼
Z

J2
jrcr�uj1

e
f

u
e

� �
dr ds ¼

Z
J2
jr � cruj1

e
f

u
e

� �
dr ds; ð1Þ
which represents the approximate arclength of Ct .
The area enclosed by Ct onto S is a little simpler to calculate. Let Hð�Þ be the Heaviside function, and Hð�Þ be its approx-

imation, then
AreaðCtÞ ¼
Z

J2
ð1�Hðuðr; s; tÞÞjc;r � c;sjdr ds ¼ lim

e!0

Z
J2

1� H
u
e

� �� �
jc;r � c;sjdr ds: ð2Þ
(1) and (2) should be compared to those in [6, Section 11].

2.2. Area preserving velocity field

Recall that our goal is to solve the problem:
min
C

‘ðCÞ subject to AreaðCÞ ¼ C: ð3Þ
As we mentioned, our approach will be to obtain a ‘flow’ that reduces the objective while respecting the constraint. The
flow deforms the curve by transporting the level set function uðr; s; tÞ. This is done through the equation
ut þw � ru ¼ 0: ð4Þ
The velocity field wðr; s; tÞ will be such that the objective is decreased, but we also need to make certain that the area is
preserved. Therefore, we need to determine the condition satisfied by w such that area is preserved during the flow.

We use the approximate area as the surrogate for the area, therefore
AreaeðCtÞ :¼
Z

J2
1� H

u
e

� �� �
jc;r � c;sjdr ds ¼ C:
Then differentiating leads to
Z
J2
�1

e
f

u
e

� �
utjc;r � c;sjdr ds ¼ 0:
Since ut þw � ru ¼ 0, and � 1
e f u

e

� �
ru ¼ r 1� H u

e

� �� �
, we have, from above,
Z

J2
½wðr; s; tÞjc;r � c;sj� � r 1� H

u
e

� �� �
dr ds ¼ 0:
Thus, for a velocity field to preserve the area, it must satisfy
divðjc;r � c;sjwÞ ¼ 0: ð5Þ
The next step is to find a velocity field that not only preserves the area, but also reduces the arclength.
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3. Descent algorithm

The algorithm we propose is a projected gradient approach. We will describe it in terms of a flow in which the objective
function, viewed as energy, is decreased in time. The flow is characterized by a velocity field w for the level set function u
which preserves the area.

Recall that the objective we wish to minimize is the arclength of the curve ‘�ðCtÞ, given in (1). We do this by evolving the
curve Ct by prescribing velocity w to its level set representation. We posit that the t-derivative of arclength takes the form
d‘eðCtÞ
dt

¼ �
Z

J2
FðuÞ �wdr ds: ð6Þ
This can be interpreted ‘physically’ as follows: viewing the arclength ‘�ðCtÞ as ‘energy’, then its time rate of change is ‘power’,
which must take the form of the dot product of ‘force’ FðuÞ and velocity w. We will show below that this is true, at least
formally, by directly calculating the derivative.

We choose a velocity of the form
w ¼ F

jc;r � c;sj
2 �

rp
jc;r � c;sj

: ð7Þ
The choice of the first term is to make a negative contribution to d‘eðCtÞ=dt. The second term is for projection to constrain
w so that the area inside Ct is preserved. The normalizations are chosen for two reasons: first, the choice will be important
when we give an interpretation for the ‘force’ F. Second, our particular choice leads to Poisson’s equation for p, which can be
solved efficiently using existing packages. In order to determine the term p, we require w to satisfy the constraint (5), which
means that
Dp ¼ div
F

jc;r � c;sj

 !
: ð8Þ
To see that w so determined leads to a flow that reduces arclength, we substitute F in (7) in (6). We obtain
d‘eðCtÞ
dt

¼ �
Z

J2
jc;r � c;sj

2jwj2 dr ds�
Z

J2
jc;r � c;sjw � rpdr ds:
Next, we use the identity
div½ðjc;r � c;sjwÞp� ¼ ðjc;r � c;sjwÞ � rpþ divðjc;r � c;sjwÞp;
and integrate by parts to obtain
d‘eðCtÞ
dt

¼ �
Z

J2
jc;r � c;sj

2jwj2 dr dsþ
Z

J2
pdivðjc;r � c;sjwÞdr ds;
using the boundary condition wj
oJ2 ¼ 0 (or periodic boundary conditions). By (5) we see that the second term on the right-

hand side is zero. Therefore, we have established that
d‘eðCtÞ
dt

6 0
and that the length of the curve stops decreasing if, and only if, w vanishes.

Remark 1. We note that the approach we have adopted here can be applied to more general objective functions and
constraints. The idea is to determine what velocity w preserves a given constraint, analogous to (5). Next, one would need to
determine an appropriate form of the velocity, similar to (7). The approach outlined is nothing more than the projected
gradient method – writing the velocity in two parts: one for descent and the other for preserving the constraint (to within
linearization). There is nothing special in the method that is specific to the curved surface geometry of the problem. Indeed it
is quite general.
3.1. Computation of ‘the force’

Computing forcing term F in terms of u and c is a matter of differential calculus and using the transport equation (4). We
start by formally differentiating (1):
d‘eðCtÞ
dt

¼
Z

J2
jr � crujt

1
e
f

u
e

� �
þ jr� cruj 1

e2 f0
u
e

� �
ut

� �
dr ds: ð9Þ
From (4), we have 1
e2 f0 u

e

� �
ut ¼ � 1

e2 f0 u
e

� �
ru �w ¼ �r 1

e f u
e

� �	 

�w so that the second term of the integrand, which we denote by

I2 reads
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I2 ¼ �jr� crujr 1
e
f

u
e

� �� �
�w: ð10Þ
We will see later that this term is cancelled by a component of the first term.
We need to get an expression for the first term in the integrand. We start by taking the gradient of the transport equation

(4):
rut þ D2uwþrwTru ¼ 0:
Since r� c is time independent, we can pre-multiply the equation above by it to get
ðr � cruÞt þr� cD2uwþr� crwTru ¼ 0:
Now, taking the scalar product of this equation with r� cru gives
1
2

o

ot
jr � cruj2 þruTr� cTr� cD2uwþruTr� cTr� crwTru ¼ 0:
By transposing, and using the identity ðu� vÞ : A ¼ uTAv ¼ vTATu, we arrive at
1
2

o

ot
jr � cruj2 þ ðD2ur� cTr� cruÞ �wþ ru� ðr � cTr� cruÞ

	 

: rw ¼ 0;
which upon division by jr � cruj gives
jr � crujt þ D2ur� cT r� cru
jr � crujwþ ru� r� cT r� cru

jr � cruj

� �� �
: rw ¼ 0: ð11Þ
Next we recall two tensor identities involving a matrix A, and vectors a; b, namely
divða� bÞ ¼ ðdivbÞaþ ðraÞb and A : rb ¼ divðATbÞ � ðdivAÞ � b:
Applying the second identity to the third term in (11) gives
ru� r� cT r� cru
jr � cruj

� �� �
: rw ¼ div r� cT r� cru

jr � cruj � ru
� �

w
� �

� div ru� r� cT r� cru
jr � cruj

� �� �
�w

¼ div r� cT r� cru
jr � cruj � ru

� �
w

� �
� div r� cT r� cru

jr � cruj

� �
ðru �wÞ

� D2ur� cT r� cru
jr � crujw;
after applying the first identity. After collecting terms (11) becomes
jr � crujt ¼ div r� cT r� cru
jr � cruj

� �
ðru �wÞ � div r� cT r� cru

jr � cruj � ru
� �

w
� �

:

We now want to use this expression in (9), thus it will be multiplied by 1
e f u

e

� �
, and then integrated over J2.

Let us first look at what happens to the second term. We multiply it by 1
e f u

e

� �
and use the product rule on the divergence to

get
div r� cT r� cru
jr � cruj � ru

� �
w

� �
1
e
f

u
e

� �
¼ div r� cT r� cru

jr � cruj � ru
� �

w
1
e
f

u
e

� �� �

� r� cT r� cru
jr � cruj � ru

� �
w

� �
� r 1

e
f

u
e

� �� �
: ð12Þ
When we integrate the expression on the right-hand side over J2, the first term gives zero as long as 1
e f u

e

� �
vanishes on oJ2.

This was assumed in the case where S has a boundary (case (i)). In that case cancellation of this term occurs as long as the
curve is not too close to the boundary of the parameter space. In the case of a closed surface (case (ii)), this term vanishes by
periodicity of c;u and w. The second term in the right-hand side of (12) becomes
r� cT r� cru
jr � cruj � r

1
e
f

u
e

� �� �� �
ðru �wÞ ¼ ru� r� cT r� cru

jr � cruj

� �� �
r 1

e
f

u
e

� �� � �
�w

¼ r� cT r� cru
jr � cruj � r

1
e
f

u
e

� �� �� �
ðru �wÞ

¼ r � cT r� cru
jr � cruj �

1
e2 f0

u
e

� �
ru

� �
ðru �wÞ

¼ ruTr� cT r� cru
jr � cruj

1
e2 f0

u
e

� �� �
ðru �wÞ

¼ jr � cruj 1
e2 f0

u
e

� �
ru �w ¼ jr� crujr 1

e
f

u
e

� �� �
�w:
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This cancels out I2 in (10). We finally arrive at the expression for the force
FðuÞ ¼ �div r� cT r� cru
jr � cruj

� �
1
e
f

u
e

� �
ru: ð13Þ
Remark 2. Considering the special case where S is a plane, with cðr; sÞ ¼ ðr; s; 0ÞT then r� cTr� c ¼ I2 and
jr � cruj ¼ jruj thus we recover the classic formula.

Note however that this holds because the parameter space has a trivial first fundamental form. If we consider another
parameterization of the plane, say cðr; sÞ ¼ ðr3; s3;0ÞT, then we do not recover the classical formula for the curvature.
Similarly, the force F is not invariant under a change of parameter space, since it represents an object onto that space.

Remark 3. For a matrix A and a vector v, we have divðATvÞ ¼ divA � vþ A : rv, where divA is as usual the (size 3) column
vector made of divergence of (size 2) row vectors of A. But divr� c ¼ 0, thus the formula for the force can also be written
as
FðuÞ ¼ �r� c : r r� cru
jr � cruj

� �
1
e
f

u
e

� �
ru: ð14Þ
3.2. Curve moving algorithm

To sum up, the minimization process is done by solving the following system of PDEs:
ut þw � ru ¼ 0; ð15Þ

wþ 1
jc;r � c;sj

rp ¼ 1

jc;r � c;sj
2 FðuÞ; ð16Þ

divðjc;r � c;sjwÞ ¼ 0: ð17Þ
The evolution terminates when the velocity field w becomes zero.
The divergence-free condition may be implemented by a slightly modified projection method. For example, for the clas-

sical Chorin-type projection [5] we perform these steps:
unþ1 �un

dt
þwn � run ¼ 0;

~wnþ1 ¼ 1

jc;r � c;sj
2 Fðunþ1Þ;

Dpnþ1 ¼ divðjc;r � c;sj ~wnþ1Þ;

wnþ1 ¼ ~wnþ1 � 1
jc;r � c;sj

rpnþ1:
We may of course use some more advanced time-stepping scheme but this algorithm is presented here for the sake of
simplicity. For example we can use Fð32 unþ1 � 1

2 unÞ rather than Fðunþ1Þ, so that wnþ1 will approximate the velocity at time
nþ 3

2 and the next step in the transport of u will be more accurate.

4. Geodesic curvature

We will next provide a geometric interpretation of the force F in (14). When the minimization (3) is solved using the algo-
rithm in (15)–(17), the process terminates when the velocity w is zero. Recall from differential geometry that curves which
minimize their length under a fixed enclosed area constraint are linked to constant geodesic curvature curves [8]. We will
show that the geodesic curvature of the curves becomes constant when the velocity is zero. Further, the geodesic curvature
provides a method for verifying numerical calculations.

An intrinsic and simple way to define the geodesic curvature [7] is to use the classical representation of the curve as a
level set U on S [6]. Then this curvature is defined by
jg ¼ divS
rSU
jrSUj

:

Note that in this formula, U needs only to be defined on S, since the surface operators do not depend on its values outside
S. From our formulation, we can easily define a function on S whose level set is the curve, by setting
Uðcðr; sÞÞ ¼ uðr; sÞ; 8ðr; sÞ 2 J2: ð18Þ
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It is therefore possible to express jg in terms of c and u. We start by taking the gradient (with respect to ðr; sÞ) of (18):
rcTðr; sÞrxUðcðr; sÞÞ ¼ ruðr; sÞ;
where rx denotes the usual gradient in R3. We implicitly extended U outside S in a smooth but arbitrary way. Now a def-
inition of the surface gradient is
rSU ¼ rU� ðrU � nÞn;
where n is a unit normal to S. Thus, on S,
rcTðr; sÞrSUðcðr; sÞÞ ¼ rcTðr; sÞrxUðcðr; sÞÞ � ðrU � nÞrcTn ¼ ruðr; sÞ;
since rcTn ¼ 0. Hence, rSU is the vector in R3 such that
rcTðr; sÞrSUðcÞ ¼ ru and n � rSUðcÞ ¼ 0;
where n ¼ c;r�c;s
jc;r�c;s j

. This can be written as
ArSUðcÞ ¼
ru

0

� �
and A ¼

cT
;r

cT
;s

ðc;r � c;sÞ
T

0
BB@

1
CCA:
The following holds for vectors a and b:
aT

bT

ða� bÞT

0
B@

1
CA
�1

¼ 1

ja� bj2
ð b� ða� bÞ �a� ða� bÞ a� b Þ:
Applying this to calculate the inverse of A, we obtain
rSUðcÞ ¼
1

jc;r � c;sj
c;s � n �c;r � n n
� � ru

0

� �

¼ 1
jc;r � c;sj

½u;rðc;s � nÞ �u;sðc;r � nÞ�:
Using the triple cross-product formula, we have
c;s � n ¼ 1
jc;r � c;sj

½jc;sj
2c;r � ðc;r � c;sÞc;s�;

c;r � n ¼ 1
jc;r � c;sj

ðc;r � c;sÞc;r � jc;sj
2c;s

h i
:

Thus,
rSUðcÞ ¼
1

jc;r � c;sj
2 ðjc;sj

2u;r � ðc;r � c;sÞu;sÞc;r þ ðjc;r j
2u;s � ðc;r � c;sÞu;rÞc;s

h i

¼ 1

jc;r � c;sj
2rc

ðjc;sj
2u;r � ðc;r � c;sÞu;sÞ

�ðc;r � c;sÞu;r þ jc;rj
2u;sÞc;s

 !
¼ 1

jc;r � c;sj
2rc

jc;sj
2 �c;r � c;s

�c;r � c;s jc;r j
2

 !
ru

¼ rc
jc;r j

2 c;r � c;s
c;r � c;s jc;sj

2

 !�1

ru:
Hence, the surface gradient is expressed in term of u and c by
rSUðcÞ ¼ rcðrcTrcÞ�1ru: ð19Þ
Note that this formula should not depend on the parameterization, since the surface gradient is intrinsic. Let us check that
this is indeed the case by considering a diffeomorphism h : J2 ! J2 which defines a new parameterization and level set such
that c ¼ ~cðhÞ and u ¼ ~uðhÞ. Then plugging these relations in the expression for surface gradient leads to
rSUðcÞ ¼ r~crhðrhTr~cTr~crhÞ�1rhTr ~u ¼ r~cðr~cTr~cÞ�1r~u:
In order to compute the geodesic curvature we need now to write the divergence operator. The expression for surface
gradient reads component-wise:
oi
SU ¼ Aiauua

; A ¼ rcðrcTrcÞ�1 2 R3�2;
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where ðu1;u2Þ ¼ ðr; sÞ and the summation over repeated indices has been used. Thus, for a velocity field V defined on S by
Vðcðr; sÞÞ ¼ vðr; sÞ with v defined from J2 to R3, we get
divSVðcÞ ¼ oi
SV iðcÞ ¼ Aiavi;ua ¼ A : rv;
which leads to the following formula for geodesic curvature:
jg ¼ A : r Aru
jAruj

� �
; A ¼ rcðrcTrcÞ�1

: ð20Þ
We would like to connect this expression to the force in (13). We know that the minimizer of our optimization problem is
somehow related to curves such that jg ¼ constant [8]. If such a relation is available, we would be able to state what the
force satisfies at termination of the evolution. Before doing this let us make a few observations.

Remark 4. The following identities hold:
ðrcTrcÞ�1 ¼ 1

jc;r � c;sj
2r� cTr� c;

ATA ¼ ðrcTrcÞ�TrcTrcðrcTrcÞ�1 ¼ ðrcTrcÞ�1
:

Remark 5. Using the above identities, we have
jAruj2 ¼ hAru;Arui ¼ hru;ATArui ¼ hru; ðrcTrcÞ�1rui ¼ 1

jc;r � c;sj
2 hru;r� cTr� crui;
thus
jAruj ¼ jr � cruj
jc;r � c;sj

:

We next calculate jc;r � c;sjjg :
jc;r � c;sjjg ¼ ðjc;r � c;sjAÞ : r Aru
jAruj

� �
¼ div

jc;r � c;sjA
TAru

jAruj

 !
� divðjc;r � c;sjAÞ �

Aru
jAruj :
We use the identities in Remark 3 in the first term on the right-hand side, and rewrite the left-hand side to get
jc;r � c;sjjg ¼ div r� cT r� cru
jr � cruj

� �
� ATdivðjc;r � c;sjAÞ �

ru
jAruj :
We will show below that ATdivðjc;r � c;sjAÞ ¼ 0 so that we have the following formula for geodesic curvature:
jc;r � c;sjjg ¼ div r� cT r� cru
jr � cruj

� �
: ð21Þ
We pause to examine (21) and connect it with the formula for the force in (13). It can be seen that
FðuÞ ¼ �jc;r � c;sjjg
1
e
f

u
e

� �
ru: ð22Þ
We showed at the beginning of Section 3 that the curve length stops decreasing when the velocity w is zero in (16). Let us
show that we get the expected minimizer. As w ¼ 0, from (16) there holds
1
jc;r � c;sj

rp ¼ 1

jc;r � c;sj
2 FðuÞ:
Remark 6. One could be surprised that the force does not vanish at equilibrium. This is due to the fact that the curve is still
willing to shorten its length, but is prevented from doing so by the area constraint. Thus, this generates a gradient-like force
(corrected by the metric).

Then from (22),
rp ¼ �jg
1
e
f

u
e

� �
ru ¼ �jgr Z

u
e

� �h i
; ð23Þ
where Z0ðrÞ ¼ fðrÞ. Intuitively for this to hold jg must be constant in the direction orthogonal to the nablas. This shows that
�jg has to be constant along level sets of u in a neighborhood of u ¼ 0. To show this more rigorously, we can use the curl of
a 2-D vector field which is the scalar defined by curlv :¼ v2;x1 � v1;x2 and verifies for a scalar function f and a velocity field v,
curlðfvÞ ¼ f curlvþr� f � u ¼ f curlv�rf � u? where u? is orthogonal to u. Thus, taking the curl of (23) above gives
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0 ¼ �rjg � r � Z
u
e

� �
¼ �rjg � r �u

1
e
f

u
e

� �
;

which just says that jg is constant along the tangent to the level sets of u when f > 0, i.e., in a neighborhood of u ¼ 0. This
proves that our minimizing curves have, as expected, constant geodesic curvature [8]. We thus proved.

Proposition 1. Algorithms (15)–(17) make the length of curve defined as the image of the zero level set of u by c diminishing in
time. If the length reaches an equilibrium, then the corresponding curve has constant geodesic curvature.

Turning back to show that ATdivðjc;r � c;sjAÞ ¼ 0, we note that
AT ¼ ðrcTrcÞ�TrcT;
so that the requirement is equivalent to
rcTdivðjc;r � c;sjAÞ ¼ 0: ð24Þ
Demonstrating (24) is through brute-force calculation. We had hoped to find a clever known fact from geometry to help
us but we were unable to do so.

We begin by calculating ðrcTrcÞ:
ðrcTrcÞ ¼
c;r � c;r c;r � c;s
c;r � c;s c;s � c;s

 !
:

Computing the inverse of this 2 � 2 matrix and using it in the definition of A, we get
A ¼ 1
detðrcTrcÞ ð

ðc;s � c;sÞc;r � ðc;r � c;sÞc;s �ðc;r � c;sÞc;r þ ðc;r � c;rÞc;s Þ:
Using the fact that jc;r � c;sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðrcTrcÞ

p
, we obtain
divðjc;r � c;sjAÞ ¼
ðc;s � c;sÞc;r � ðc;r � c;sÞc;sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðrcTrcÞ
p

 !
;r

þ
�ðc;r � c;sÞc;r þ ðc;r � c;rÞc;sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðrcTrcÞ
p

 !
;s

:

Calculations showing that
c;r �
ðc;s � c;sÞc;r � ðc;r � c;sÞc;sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðrcTrcÞ
p

 !
;r

þ c;r �
�ðc;r � c;sÞc;r þ ðc;r � c;rÞc;sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðrcTrcÞ
p

 !
;s

¼ 0
needed to prove the first of (24) are omitted as they are too tedious. A similar result involving c;s also holds. Thus, we can
conclude that the formula for geodesic curvature in (21) is indeed correct.

5. Numerical examples

In the context of moving a curve with given enclosed surface, our projection algorithm has a clear advantage over other
algorithms that use a penalty term to enforce the fixed area constraint. Our implementation uses a MAC grid which ensures
accurate divergence-free condition [5], even in the case where c is not identity. Indeed we project the velocity field
jc;r � c;sj ~wðr; sÞ ¼ jc;r � c;sjð~uðr; sÞ; ~vðr; sÞÞ onto the space of divergence-free vector fields by solving a Poisson equation in
ðr; sÞ plane. Using our MAC grid this amounts to solve for p (for simplicity we take the grid spacing dr ¼ ds ¼ h);
piþ1;j þ pi�1;j þ pi;jþ1 þ pi;j�1 � 4pi;j

h2 ¼ 1
h
jc;r � c;sjiþ1

2;j
~uiþ1

2;j
� jc;r � c;sji�1

2;j
~ui�1

2;j

h i
þ 1

h
jc;r � c;sji;jþ1

2
~vi;jþ1

2
� jc;r � c;sji;j�1

2
~vi;j�1

2

h i
and then to update the velocity by
uiþ1
2;j
¼ ~uiþ1

2;j
� 1
jc;r � c;sjiþ1

2;j

piþ1;j � pi;j

h
;

vi;jþ1
2
¼ ~vi;jþ1

2
� 1
jc;r � c;sji;jþ1

2

pi;jþ1 � pi;j

h
:

Performing these two steps produce a velocity field w which is divergence-free at the discrete level, since from the above
equations there holds
1
h
jc;r � c;sjiþ1

2;j
uiþ1

2;j
� jc;r � c;sji�1

2;j
ui�1

2;j

h i
þ 1

h
jc;r � c;sji;jþ1

2
vi;jþ1

2
� jc;r � c;sji;j�1

2
vi;j�1

2

h i
¼ 0:
Thus, the surface area constraint is not penalized but enforced. Surface area loss from initialization to stationary state in the
case of an ellipse on a cylinder relaxing to a circle is about 2% for a 64� 64 grid, under 1% (0.66%) for a 128� 128 grid and



Fig. 2. Minimization of curve length at prescribed enclosed surface area, on a paraboloid. Convergence toward the horizontal circle. Last picture shows a
non-perspective plot of the final state.

Fig. 3. Convergence to a constant curvature curve. Horizontal and vertical curvatures on the evolving curve are plotted.
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0.06% for a 256� 256 grid (see Fig. 4). Moreover, as the Poisson equation associated to the projection method lies on the
rectangular parametric space, fast FFT solvers (e.g. FISHPACK [13]) may be used, leading to very small computational costs.

The boundary conditions are of Dirichlet type in case of non-closed supporting surfaces, and periodic in one direction in
the case of surfaces of revolution. Note however that our algorithm as presented above in its native form requires a regular
parametrical representation of the supporting surface in the neighborhood of the moving curve. This fact rules out, for exam-
ple, the case where the supporting surface is a closed sphere, unless if the curve remains away from the singular poles. In this
last case the algorithm works since the force is localized around the curve. In order to deal with a sphere without any a priori
extra information on the curve motion, we have to adapt the algorithm to handle parametrical patches. This work is under
development.

Numerically, we found different ways to compute the force. While each give overall the same evolution, some are more
stable than others. In this respect it is worth noticing that our problem has no built-in diffusion, which could regularize some
numerical oscillations. For that reason we use WENO [9] schemes to solve the advection equation (15) and to compute gra-
Fig. 4. Cost function (top) and constraint (bottom) for 64, 128 and 256 grid points.
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dients of the level set function. We found that the form (14) leads to a more stable evolution than the divergence form (13).
An even more stable form could be found by using the identity
Fig. 5.
A : r Aru
jAruj

� �
¼ 1
jArujA : I� Aru� Aru

jAruj

� �
rðAruÞ;
applied with A ¼ r� c to Eq. (14). Note that in the classical computation of curvature on a plane, one uses an expanded form
involving second order partial derivatives of u. This might be done here too (by expanding the last gradient term), but would
lead to a huge formula. This intermediate formula showed good stability behavior while remaining relatively easy to
implement.

5.1. Paraboloid supporting surface

We first demonstrate our minimization algorithm on a simple problem of finding the shortest closed curve on a parab-
oloid. The minimizer is known to be a circle. In Fig. 2, we show the evolution of the minimization starting with an ellipsoid
on the paraboloid. As can be seen the flow ends with a horizontal circle.

5.2. Cylindrical supporting surface

In the next calculation, we demonstrate two properties of our minimization algorithm – area conservation and correct-
ness of solution. To demonstrate the latter, we consider the minimizing the length of a closed curve on a circular cylinder,
where the initial guess for the curve is an ellipse. There are two possible outcomes, depending on the radius of the cylinder
[8]. The simplest case, without topological changes, is when the cylinder has a radius large enough so that the minimizer is a
circle (see below for the other case). With the cylinder oriented vertically, we evaluated the geodesic curvature on the curve.
The value of the geodesic curvature is sampled at two points, corresponding to the vertical and horizontal (with respect to
the orientation of the cylinder) curvatures. In Fig. 3, we plot these horizontal and vertical curvatures as a function of evolu-
tion. Both converge towards a common value which is the curvature of the minimizing circle. The figure also demonstrates
the claimed area conservation. If area is lost during evolution, the radius of the final circle will continue to decrease, thus
increasing the curvature. As can be seen in the figure, the curvatures’ asymptotic behavior is horizontal. We conclude that
area conservation property holds reasonably even in the rough grid 64� 64 used. In Fig. 4, we plot the length (cost function)
and area (constraint) for n = 64, 128, 256. The area loss is respectively 2%, 0:66% and 0:06%. Note that area loss for low res-
olution leads to a smaller cost function, since the perimeter is also reduced. The area of the minimizer is theoretically
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� 0:375
p

	 1:924. In the next example, the supporting surface is a cylinder of radius a ¼ 1. An ellipse in the para-
metric space is chosen as initialization, which gives the curve drawn on the left-most picture in Fig. 5. This curve is wrapped
around the cylinder: the top and bottom loops are running on the back part of the surface while the thinnest part of domain
enclosed by the curve is drawn on the front. Computations are made on a 128� 128 grid. Due to the fact that the area en-
closed by the curve is greater than 4pa2, the minimizing curve is known to be made of two circles [8], a fact that our com-
putations recover. We plotted in Fig. 6 some steps of this minimization process drawn in the parametric space ðr; sÞ. In Fig. 7,
we plotted the evolution of length and area while minimization occurs. The steep variation in length corresponds to the
topological change.
Minimization of curve length leading to a topological change. Last picture on the right is without perspective to demonstrate symmetry property.



Fig. 6. Same minimization as Fig. 5. Selected iteration steps in the parametric space.

Fig. 7. Length and area variation in the cylinder case with topological change.
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Fig. 8. Minimization of curve length at prescribed enclosed surface area, in the case of a non-flat surface.
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5.3. Hyperboloid supporting surface

In the preceding example the metric was flat. To illustrate the fact that our method works for an arbitrary supporting sur-
face, we consider the hyperboloid shape of Fig. 8 and perform the same kind of minimization, starting from an ellipse in the
parametrical space. This leads also to a minimizer which is made of two closed circles.

6. Discussion

In this work, we have considered a geometrical optimization problem on a fixed curved surface. As a model, we consid-
ered the isoparametric problem of finding a curve of least length with a given area. The method we propose uses a level set
function to represent the unknown geometry. The level set function is defined in the 2-D parameter space. Thus, the com-
putation takes place in two dimensions, leading to a very efficient method. The level set function’s evolution is governed by a
constrained gradient flow which reduces the arclength of the curve. The velocity field is calculated by a projection method.
Thus, the curve moves in such a way that the enclosed area remains constant. The approach we propose is a framework for
inverse and optimization problems on curved surfaces. In a future work, we will apply the strategy on an inverse problem
involving geometry on curved surfaces.
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